Wide-field Pupil Plane Imaging Interferometry D. Leisawitz^a, X. Zhang^{a, b}, W. Danchi^a, D. Leviton^a, R. Lyon^a, A. Martino^a, J.C. Mather^a, and L.G. Mundy^c - ^a NASA Goddard Space Flight Center - ^b Raytheon ITSS - ^c University of Maryland, NASA Faculty Fellow For information contact: Dave Leisawitz david.leisawitz@gsfc.nasa.gov (301) 286-0807 6 June 2001 # Roadmap applications **SPIRIT** AAS 198, Pasadena, CA Decade Report says develop enabling technologies for space-based IR interferometry #### Science motivation - FOV in traditional stellar interferometer is limited to primary beam of individual telescope apertures, $\sim \lambda \, / \, D_{tel}$ radians - This is much smaller than the FOV typically desired - Something like the Hubble WF/PC field (a few arcminutes) would be nice 3 ## Mosaicing analog - Pupil plane beam combination - Record fringe pattern in time domain in each pixel, as in conventional Michelson - Detector array sees multiple "primary beams" in parallel - Add stroke to optical delay line to compensate geometric delay, see off axis - Total stroke provides both wider FOV and spectroscopy (FTS) - Pixels Nyquist sample contiguous primary beams ### Research plan - Develop testbed instrument - Generate portfolio of data sets - –sources of various levels of spatial and spectral complexity - Develop and refine synthesis imaging algorithms - -adapt existing imaging software, data reduction environments (e.g., MIRIAD, AIPS++) - new algorithms and software for mosaicing in optical interferometry for improved performance (imaging and efficiency) - Model testbed end-to-end system performance - understand error sources - –improve testbed - -facilitate design of interferometers for space